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Abstract: The reduction of [Mn(II)-salophen] derivatives [salophen) N,N ′-ethylenebis(salicylideneaminato) dianion]
led to the formation of C-C bridged dimers. Such C-C bonds function as two electron shuttles in electron-transfer
reactions. The reduction of [Mn(salophen)(THF)]2 (1) and [Mn(3,5-But4salophen)(THF)]2 (3) with 2 equiv of sodium
metal led to the corresponding single C-C bond bridged dimers, [Mn2(salophen2)Na2(DME)4] (5) [salophen2 )
C-C bonded salophen dimer] and [Mn2(3,5-But4salophen2)Na2(DME)6] (7), respectively. Complexes5 and7 undergo
a further two electron reduction to [Mn2(*salophen2*)Na4(DME)6] (6) [*salophen2* ) C-C doubly bonded salophen
dimer] and [Mn2(*3,5-But4salophen2*)Na4(DME)4] (8), respectively, both containing a double C-C bridge. The
obtention of [Mn2{salophen(Me)CH2)}2Na4(DME)4] (9) from [Mn(salophen-Me2)(THF)]2 (2) strongly supports the
existence of free radical precursors in the formation of C-C bonds. Complex6 has been used as a source of four
electrons in a number of reactions, thus reduction of Ag+, PhCH2Cl, p-benzoquinone, and [CoII(MeOsalen)] occurs
with the regeneration of the starting material1. The C-C bond cleavage is the source of electrons, without being
involved in any reaction as a reactive site. With stronger oxidizing agents not only complexes6 and8 transfer the
electrons stored at the C-C bonds but also the metal undergoes a change in the oxidation state. The reaction of6
with dioxygen produces a novel form of di-µ-oxo-Mn(IV) dimers, where the salophen ligand displays a bridging
bonding mode in [Mn2(µ-salophen)2(µ-O)2] (15) and [Mn2(µ-3,5-Butsalophen)2(µ-O)2] (16).

Introduction

The chemistry presented in this paper concerns the design of
molecules which contain at the same time an active site like a
transition metal and an additional functionality which is devoted
to the storage and delivery of electrons. The latter one should
be different from the metal itself. To couple a metal and an
independent electron reservoir in the same molecule may open
attractive perspectives in the molecular design of molecules
devoted to energy storage (molecular batteries) or for a
functioning mode in charge storage different from that in
Photosystem II.1

Let us consider the most common mechanisms by which we
can store and release electrons from molecules. The most
obvious involves changing the oxidation state of the metal, thus
a number of single electrons are made available at different
potentials. Another, though from an organic perspective,
involves the use of polyaromatic systems able to accept electrons
in theπ* orbitals, though this is limited in its storage capacity.2

A third possibility concerns the formation and cleavage of
chemical bonds. This latter mechanism would make available
electron in pairs and relatively large in number. The reductive

or the oxidative coupling and their reverse, which are well-
known classes of reaction in organometallic chemistry, can be
used for the formation and cleavage of bonds. A significant
example comes from the natural redox relationship between
cysteine and cystine.3

We report here how we can store electrons in the formation
of the most common C-C bonds,Via the reversible reductive
coupling of imino groups belonging to a tetradentate Schiff base
ligand, that is salophen [N,N-ethylenebis(salicylideneaminato)
dianion] bonded to manganese(II). This observation has been
made, though not exhaustively explored, by us in the past in
some reductions of Ni-, V-, and Co-salophen complexes.4

These C-C bonds are oxidatively cleaved in a number of
reactions, without being directly involved as reactive sites in
the same reaction. To couple Mn and an intramolecular electron
reservoir may be of relevant significance in designing artificial
Photosystems II.1

We give here an account on the electron-rich manganese(II)
derived from the stepwise reduction of the model compounds:
[Mn(salophen)(thf)2] and [Mn(3,5-But4salophen)(thf)]2 and their
behavior on the reoxidation using mainly dioxygen and qui-
nones. A few of the present results have been briefly com-
municated.5* To whom correspondence should be addressed.
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Results and Discussion

1. Starting Compounds. The synthesis of compounds1
and2 has been carried out using an organometallic method (in
Scheme 1,a) in order to avoid (i) the presence of alkali and
ammonium salts in the final product; (it is well-known that
metal-Schiff base complexes bind a variety of organic and
inorganic cations);6 (ii) protic conditions; and (iii) separation
of poorly soluble final products from salts. This method is now
particularly convenient, due to the scaled up synthesis of Mn3-
Mes6, [Mes≡ 2,4,6-Me3C6H2].7

In the case of3, its high solubility allowed the use of the
conventional metathetical reaction with MnCl2 for the synthesis
(Scheme 1,b). Complexes1-3 have been isolated as dimers
in their solvated form with THF, which can be easily replaced
by other solvents like pyridine in4. The structure of such
dimeric forms is exemplified by the report on the X-ray analysis
of 4, while the magnetic properties will be discussed along with
those of the other dimers reported through the paper. Selected
bond distances and angles are quoted in Tables 1-4 for
complexes4-6, and9, respectively. In Table 5 a comparison
of relevant conformational parameters is given for all complexes.
We anticipate that complex4 consists of discrete dimeric units
(Figure 1). Manganese exhibits a pseudo-octahedral coordina-
tion with the N2O2 set of atoms from the salophen ligand in the
equatorial plane and the pyridine molecule in an axial position,
while the sixth coordination site is occupied by the oxygen of
a second monomeric unit at a rather long distance [Mn1A-
O1B, 2.262(12) Å; Mn1B-O1A, 2.254(13) Å]. For the structural
Mn-O, and Mn-N parameters we refer to Table 1, since they
are in the range expected for Mn(II)-Schiff base complexes.8,9

The N2O2 core is not planar, showing remarkable tetrahedral distortions (Table 5). Each [Mn(salophen)] moiety assumes a
twisted “umbrella” conformation, the dihedral angles between
peripheral phenolic rings being 19.0(7) and 21.8(8)° for moiety
A and B, respectively.
The temperature dependence of the magnetic moments of the

starting compounds1-4 are typical of weakly coupled Mn(II)
dimers. The data of3, taken as representative of the four
compounds (1-4), were fitted with the simple theoretical
equation10 obtained by the Heisenberg spin hamiltonianHex )
-2JŜ1 - Ŝ2, with S1 ) S2 ) 5/2. To obtain a good fitting, we
included a correction for a small quantity of monomeric Mn-
(II) impurities, x, which were assumed to obey Curie law,
obtainingg ) 1.97,J ) -4.7 cm-1, andx ) 1.8 %.11

2. Reduced Forms of [Mn(salophen)] Derivatives.Com-
plex1 undergoes a stepwise reduction to5 and6 in the reaction
with sodium metal in THF. The sequence is pictorially shown
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Scheme 1 Table 1. Selected Bond Distances (Å) and Angles (deg) for
Complex4

molecule A molecule B

Mn1-O1 2.087(10) 2.097(10)
Mn1-O2 2.062(13) 2.015(13)
Mn1-N1 2.217(17) 2.238(16)
Mn1-N2 2.212(18) 2.200(17)
Mn1-N3 2.382(15) 2.387(15)
O1-C1 1.31(2) 1.36(2)
O2-C20 1.30(3) 1.31(3)
N1-C7 1.31(3) 1.27(3)
N1-C8 1.41(3) 1.41(3)
N2-C13 1.46(3) 1.43(3)
N2-C14 1.26(3) 1.33(3)
N3-C21 1.31(3) 1.36(3)
N3-C25 1.36(3) 1.34(3)

N1-Mn1-N2 73.2(7) 75.1(6)
O2-Mn1-N2 86.3(6) 85.4(6)
O2-Mn1-N1 159.2(6) 160.0(6)
O1-Mn1-N2 158.2(7) 159.0(6)
O1-Mn1-N1 85.9(5) 84.9(5)
O1-Mn1-O2 114.8(5) 115.0(5)
Mn1-O1-C1 124.4(11) 125.6(11)
Mn1-O2-C20 130.8(13) 132.2(13)
Mn1A-O1B 2.262(12) Mn1B-O1A 2.254(13)
N3A-Mn1A-O1B 169.3(6) N3B-Mn1B-O1A 169.3(5)
Mn1A-O1A-Mn1B 102.2(4) Mn1A-O1B-Mn1B 101.6(4)
C1A-O1A-Mn1B 114.5(11) C1B-O1B-Mn1A 115.2(11)

Figure 1. ORTEP view of complex4.

Carbon-Carbon Bonds Functioning as Electron Shuttles J. Am. Chem. Soc., Vol. 119, No. 22, 19975145



in Scheme 2, which is based on the structural information on
1, 5, and6; the upper part showing the structural consequences
on the two salophen skeletons upon reduction, the lower part
showing the corresponding chemical equations.
The starting material1 is drawn as two overlapping non-

bonded monomeric units, since we omitted for clarity the
bridging oxygen interaction (see the structure of4). The
introduction of two electrons into the dimer causes the reductive
coupling of two imino groups across the two monomers with
the consequent formation of a C-C bond (complex5).4,5 The
structural analysis on5 (Vide infra) shows, however, that the
C-C bond formation is accompanied by a change in the bonding
mode of the salophen skeleton. Such a change in the bonding
mode can be visualized by rotating the two oxygen arms

involved in the C-C bond formation in the opposite direction,
as it can be easily followed using the oxygen labeling used in
Scheme 2. At the same time the two related nitrogens display
a bridging bond across the two Mn. The further introduction
of two electrons leading from5 to 6 has the same effect on the
other pair of imino groups. The oxygen labeling in Scheme 2
shows that the four electron reduction causes not only the C-C
bond formation but the formal exchange of the two salophen
skeletons between the two Mn.
The anionic species depicted in Scheme 2 has been isolated

as tight ion-pairs with sodium cations and with the stoichiometry
shown at the bottom of the scheme. The synthesis of6 has
been carried out with a large excess of sodium metal, while the
formation of 5 with controlled amounts of sodium is not

Table 2. Selected Bond Distances (Å) and Angles (deg) for Complex5

Mn1-O1 2.036(7) Mn2-O2 1.995(7)
Mn1-O4 2.027(6) Mn2-O3 2.011(7)
Mn1-N1 2.208(10) Mn2-N3 2.213(8)
Mn1-N2 2.135(7) Mn2-N2 2.182(6)
Mn1-N4 2.184(9) Mn2-N4 2.143(8)
Na1-O1 2.353(6) Na2-O2 2.401(8)
Na1-O4 2.525(6) Na2-O3 2.398(7)
Na1-O5 2.458(9) Na2-O7 2.403(11)
Na1-O6 2.304(14) Na2-O8 2.438(11)

Na2-O9 2.611(13)
Na2-O10 2.405(12)

O1-C1 1.336(13) O3-C21 1.329(12)
O2-C20 1.351(12) O4-C40 1.355(13)
N1-C7 1.281(14) N3-C27 1.306(13)
N1-C8 1.437(12) N3-C28 1.394(14)
N2-C13 1.378(14) N4-C33 1.367(14)
N2-C14 1.443(14) N4-C34 1.508(11)
C14-C34 1.602(15)
C14-C15 1.543(13) C34-C35 1.504(11)

N2-Mn1-N4 69.8(3) N2-Mn2-N4 69.6(3) O3-Na2-O10 96.9(3)
N1-Mn1-N4 131.5(3) N2-Mn2-N3 129.5(3) O3-Na2-O9 97.8(3)
N1-Mn1-N2 74.8(3) N3-Mn2-N4 73.0(3) O3-Na2-O8 163.4(4)
O4-Mn1-N4 94.8(3) O2-Mn2-N2 93.0(3) O3-Na2-O7 97.0(3)
O4-Mn1-N2 106.6(3) O2-Mn2-N4 109.0(3) O2-Na2-O10 100.0(3)
O4-Mn1-N1 126.9(3) O2-Mn2-N3 131.1(3) O2-Na2-O9 164.6(4)
O1-Mn1-N4 118.8(3) O3-Mn2-N2 120.3(3) O2-Na2-O8 104.4(3)
O1-Mn1-N2 156.2(3) O3-Mn2-N4 155.4(3) O2-Na2-O7 105.0(4)
O1-Mn1-N1 84.5(3) O3-Mn2-N3 84.8(3) O2-Na2-O3 74.8(3)
O1-Mn1-O4 95.1(2) O2-Mn2-O3 93.4(3)
O5-Na1-O6 69.1(4) O9-Na2-O10 67.0(4)
O4-Na1-O6 100.3(3) O8-Na2-O10 99.5(4)
O4-Na1-O5 169.1(3) O8-Na2-O9 86.5(4)
O1-Na1-O6 107.2(4) O7-Na2-O10 153.8(4)
O1-Na1-O5 104.6(3) O7-Na2-O9 89.1(4)
O1-Na1-O4 75.8(2) O7-Na2-O8 67.0(4)
Mn1-N2-Mn2 81.0(3) Mn1-N4-Mn2 80.8(3) N2-C14-C34 108.2(7)
Mn2-N2-C14 101.4(6) Mn2-N4-C34 112.7(5) N2-C14-C15 117.0(8)
Mn2-N2-C13 119.4(6) Mn2-N4-C33 115.6(5) C15-C14-C34 113.0(8)
Mn1-N2-C14 113.0(5) Mn1-N4-C34 102.3(6) N4-C34-C14 103.2(7)
Mn1-N2-C13 113.6(6) Mn1-N4-C33 121.4(5) N4-C34-C35 117.3(7)
C13-N2-C14 121.1(8) C33-N4-C34 118.0(8) C14-C34-C35 113.5(8)

Scheme 2
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particularly wise, because it should be separated from a mixture
containing6. Independent high yield synthesis of5 has been
discovered (Vide infra). Pure5 undergoes reduction to6. The
occurrence of a mixture of5 and6 even using limited amounts
of Na suggests that the reduction of5 to 6 is significantly faster
than1 to 5. Both 5 and6 have been fully characterized (see
Experimental Section), including magnetic studies (see magnetic
section) and an X-ray analysis. The structure of5, shown in
Figure 2, displays the main features given in Scheme 2.
The C-C bond [C14-C34, 1.602(15) Å] bridging the two

salophen units is particularly long, as is the case for very
crowded structures. As a consequence of the sp3 character of
these imino carbons the phenolic rings O2,C15‚‚‚C20 and O4,-
C35‚‚‚C40 are nearly perpendicular to the remaining part of
the salophen, the dihedral angles with N1,N2,O1,C1‚‚‚C13 and
N3,N4,O3,C35‚‚‚C40 best planes being 105.5(2)° and 102.9-
(2)°, respectively. In such a conformation the planarity of the
N2O2 salophen core is lost, and the ligand behaves as a tridentate
N-N-O ligand toward one Mn and either O2 or O4 binds the
adjacent manganese. Therefore the original salophen has been
converted into the dinucleating hexa-anionic salophen2 ligand.
The two Mn achieve a trigonal bipyramidal coordination
geometry thanks to the bridging bonding mode of N2 and N4.
The folding of salophen allowed the pair of atoms O2,O3

and O1,O4 to position at bite distances of 2.915(10) and 3.000-
(8) Å, respectively, thus functioning as bidentate ligands for
Na2 and Na3 cations. Their coordination spheres are completed
with DME molecules (see Figure S6). The structural Mn-N
and Mn-O parameters do not show any particularity except
for the rather short Mn1-N2 and Mn2-N4 [Mn-Nav, 2.138(5)
Å] involving the anionic nitrogens (Table 2). The major
structural changes on moving from5 to 6 (Figure 3) have been
depicted in Scheme 2.
The 2-fold coupled salophen moieties joined by two C-C

bonds [C7-C14′, 1.631(6) Å] form the centrosymmetric di-
nucleating octaanionic *salophen2* ligand, which has been
drawn without the metal centers in Figure 4.
The two centrosymmetric manganese atoms are bonded to

the opposite sides of the centrosymmetric N4 planar core at
distances ranging from 2.154(3) to 2.281(3) Å. The coordina-

tion around each metal is completed by twocis arranged
oxygens [O1, O2 around Mn1] (Figure 5).
Referring to Figure 5, it should be mentioned (i) that Mn

does not occupy the center of the prism, the displacements from
the three faces O1,O2,N1,N2; O1,O2,N1′,N2′; and N1,N2,N1′,-
N2′ being 0.988(1), 0.287(1), and 1.330(1) Å respectively; (ii)
the Mn‚‚‚Mn separation is 2.668(1) Å. Such a short metal-

Figure 2. SCHAKAL view of complex5. The O7, O8, C45-C48
DME molecule bonded to Na2 and the B position of C44 are omitted
for clarity.

Table 3. Selected Bond Distances (Å) and Angles (deg) for
Complex6a

Mn1-O1 2.171(4) Na1-O5 2.481(6)
Mn1-O2 2.121(3) Na1-O6 2.416(5)
Mn1-N1 2.258(3) Na2-O1 2.459(4)
Mn1-N1′ 2.174(4) Na2-O2 2.460(4)
Mn1-N2 2.281(3) Na2-O7 2.469(4)
Mn1-N2′ 2.154(3) Na2-O8 2.400(4)
Na1-O1 2.329(3) O1-C1 1.330(5)
Na1-O2 2.391(3) O2-C20 1.330(5)
Na1-O3 2.514(4) C7-C14′ 1.631(6)
Na1-O4 2.347(4)

N2-Mn1-N2′ 106.1(1) O7-Na2-O8 68.1(1)
N1′-Mn1-N2′ 70.6(1) O2-Na2-O8 107.3(1)
N1′-Mn1-N2 68.5(1) O2-Na2-O7 154.4(2)
N1-Mn1-N2′ 69.3(1) O1-Na2-O8 149.6(1)
N1-Mn1-N2 66.9(1) O1-Na2-O7 105.1(1)
N1-Mn1-N1′ 106.0(1) O1-Na2-O2 65.4(1)
O2-Mn1-N2′ 165.3(1) Na1-O1-Na2 94.3(1)
O2-Mn1-N2 85.1(1) Mn1-O1-Na2 87.3(1)
O2-Mn1-N1′ 106.1(1) Mn1-O1-Na1 89.7(1)
O2-Mn1-N1 124.7(1) Na2-O1-C1 107.8(2)
O1-Mn1-N2′ 102.6(1) Na1-O1-C1 136.3(3)
O1-Mn1-N2 128.1(1) Mn1-O1-C1 127.5(3)
O1-Mn1-N1′ 163.3(1) Na1-O2-Na2 92.7(1)
O1-Mn1-N1 84.7(1) Mn1-O2-Na2 88.4(1)
O1-Mn1-O2 76.6(1) Mn1-O2-Na1 89.3(1)
O5-Na1-O6 66.8(2) Na2-O2-C20 111.4(3)
O4-Na1-O6 154.6(2) Na1-O2-C20 135.2(3)
O4-Na1-O5 88.1(2) Mn1-O2-C20 127.0(3)
O3-Na1-O6 112.1(2) Mn1-N1-C8 102.0(2)
O3-Na1-O5 85.7(2) Mn1-N1-C7 105.5(2)
O3-Na1-O4 67.5(1) C7-N1-C8 128.3(3)
O2-Na1-O6 104.0(1) Mn1-N1′-C7′ 116.2(3)
O2-Na1-O5 117.0(2) Mn1-N2-C14 104.6(2)
O2-Na1-O4 83.5(1) Mn1-N2-C13 101.8(2)
O2-Na1-O3 142.9(1) C13-N2-C14 127.5(3)
O1-Na1-O6 107.0(2) Mn1-N2′-C14′ 116.9(2)
O1-Na1-O5 172.2(2) N1-C7-C6 118.5(3)
O1-Na1-O4 98.3(1) C6-C7-C14′ 109.2(3)
O1-Na1-O3 92.5(1) N1-C7-C14′ 107.0(3)
O1-Na1-O2 68.5(1)

a Prime denotes a transformation of 1- x, y, 1 - z.

Figure 3. ORTEP view of complex6 (30% probability ellipsoids).
DMEmolecules bonded to sodium are omitted for clarity. Prime denotes
a transformation of 1- x, -y, 1 - z.
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metal distance is particularly relevant in Mn dimers involved
in redox processes.1d,12 The *salophen2* ligand defines an
approximately planar 12-membered ring (see Figure 4) [maxi-
mum deviation 0.123(3) Å for N2] which is almost coplanar
with the twoo-phenylendiamine rings.
The N2O2 cores are almost perpendicular to the planar macro-

ring system [dihedral angle 89.4(1)°]. The conformation of the
ligand allowed the O1 and O2 to function twice as a bidentate
ligand for Na1 and Na2, which complete their coordination
spheres with two and one DME molecules (not shown in Figure
3, see Figure S7), respectively. In the later case, the O4 set is
almost planar with Na2 displaced by 0.599(2) Å from it toward
the C8‚‚‚C13 ring, which is almost coplanar with the O4 core
[dihedral angle 8.5(1)°]. The rather short range of the Na2‚‚‚C
distances (from 2.834(5) to 3.288(6) Å) suggests a Na2‚‚‚η6-
(C8-C13) interaction, with a Na2‚‚‚ring centroid separation of
2.715(5).13

The search for an improved synthesis of5 led us to discover
a major property of the C-C bound Schiff base ligands. Mixing
equimolar amounts of1 and 6 in DME at room temperature
leads to 90% of5 as red violet crystals (Scheme 3), through
the same steps discussed in detail in Scheme 2.
The occurrence of such a reaction is significant in many

respects: (i) the C-C bond formation and cleavage is reversible
(see the reduction of5 to 6 and reaction in Scheme 3); (ii) the
C-C bond functions as a shuttle of two electrons; and (iii) such
an electron transfer can occur intermolecularly. As far as the
latter point is concerned, we believe that the reaction between
1 and6 is most probably assisted by the alkali cations which
allow the two species to come in contactVia coordination to
the same sodium ions.

We should mention at this point that the parallel synthetic
pathway and redox behavior have been observed for the But

substituted salophen-manganese complex3, as reported in
Scheme 4.
The But substituents allowed us in many cases to better

manage the solubility of such compounds, which are rather
insoluble in the case of unsubstituted salophen.
Let us now discuss the genesis of our C-C coupled

compounds. The best Schiff base which can be used for
electronic reasons and its conformational characteristics is
salophen (strictly planar), since the maximum of electronic
delocalization is assured over the three conjugated aromatic
rings. A rather obvious hypothesis is that, as in a normal pinacol
reduction,14 which has in the present case the unusual charac-
teristic of being reversible by the oxidative cleavage of the C-C
bond, the reduction of the imino group leads to a radical anion
either dimerizing to C (pathwaya) or adding to an unreacted
imino group to form a free radical to the nitrogen (pathwayb,
intermediate D) which is further reduced to C.
The key steps in both pathwaysa andb is the dimerization

to produce C and D. Both dimerizations should suffer from
steric hindrance at the imino carbons. For this reason we carried
out the same reduction on2, where the imino hydrogens have
been replaced by two methyl groups in the starting salophen
ligand. The reduction of2 carried out in THF with a rather

(12) (a) Manchanda, R.; Brudvig, G. W.; Crabtree, R. H.Coord. Chem.
ReV. 1995, 144, 1. (b) Pecoraro, V. L.; Baldwin, M. S.; Gelasco, A.Chem.
ReV. 1994, 94, 807.

(13) Weiss, E.Angew. Chem., Int. Ed. Engl.1993, 32, 1501.

(14) (a) Allinger, N.Org. Synth.1963, IV, 840. (b) Bloomfield, J. J.;
Owsley, D. C.; Ainsworth, C.; Robertson, R. E.J. Org. Chem.1975, 40,
393. (c) Schreibmann, A. A. P.Tetrahedron Lett.1970, 4271. (d) Smith, J.
G.; Ho, I.J. Org. Chem.1972, 37, 653. (e) Jaunin, R.; Holl, R.HelV. Chim.
Acta1958, 41, 1783. (f) Jaunin, R.; Magnenat, J.-P.HelV. Chim. Acta1959,
42, 328. (g) Bastian, J.-M.; Jaunin, R.HelV. Chim. Acta1963, 46, 1248.
(h) Shono, T.; Kise, N; Okazaki, E.Tetrahedron Lett.1992, 33, 3347.

Figure 4. SCHAKAL view of the doubly C-C bond bridged salophen,
*salophen*, in complex6.

Figure 5. SCHAKAL drawing of coordination polyhedra around
manganese cations in complex6.

Scheme 3

Scheme 4

Scheme 5
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large excess of sodium metal gave9 as a yellow crystalline
solid upon recrystallization from DME. In this case, the
preliminary generation of a radical anion is not followed by
any dimerization, rather the radical at the carbon abstracts a
hydrogen atom from a methyl group either of the same or of
the other salophen of the dimer, to give a methylene and leading
to the rearrangement shown in Scheme 6.
The bonding scheme displayed in Scheme 6 for9 is based

on the X-ray structure reported in Figure 6.
The centrosymmetric dimer contains two [Mn(salophen)]

units, with the presence of a methyl substituent at C7 [C7-
C21, 1.515(7) Å] and a methylene group at C14 [C14-C22,
1.354(8) Å]. The latter one forms with the adjacent C14-N2
[1.392(6) Å] a sort of azaallyl fragment, while C7-N1 is
reduced to a single bond [1.445(7) Å]. Dimerization occurs
through the amido N2 which bridges asymmetrically the two
Mn atoms, which are at a distance of 3.050(1) Å [Mn1-N2,
2.440(4) Å; Mn1-N2′, 2.104(4) Å]. The coordination geometry
around the metal is a distorted trigonal bipyramid with N1, O2,
and N2 in the axial positions. Na1 (bonded to O1 and O2) and
Na2 (bonded to O2 and N1) are in a pseudotetrahedral
environment (see Figure S9) completed by a DME molecule.
The structural parameters not mentioned above do not deserve
any particular comment (Table 4).
The temperature dependence of the magnetic moment of

compounds5-8 indicates antiferromagnetically coupled Mn-
(II) dimers. The best fitting values for5 and6 areg ) 2.02,J
) -43.0 cm-1, x ) 3.9% andg ) 1.97,J ) -40.8 cm-1, x )
0.4%, respectively. The exchange constant values found for

5-8 show fairly strong antiferromagnetic coupling for these
µ-amido Mn(II) dimers.11 It is worth noting that these values
are higher than those observed forµ-hydroxo,µ-alkoxo,µ-phen-
oxo, andµ-carboxylato Mn(II)-Mn(II) dimers (with exchange
coupling constants of few cm-1) intensively studied1c,15-17

within the investigation of inorganic model complexes of
manganese-containing metalloproteins.1c

(15) Wieghardt, K.; Bossek, U.; Nuber, B.; Weiss, J.; Bonvoisin, J.;
Corbella, M.; Vitols S. E.; Girerd, J.-J.J. Am. Chem. Soc.1988, 110, 7398.

(16) Menage, S.; Vitols, S. E.; Bergerat, P.; Codjovi, E.; Kahn, O.; Girerd,
J.-J.; Guillot, M.; Solans X.; Calvet, T.Inorg. Chem. 1991, 30, 2666.

(17) Wieghart, K.; Bossek, K.; Bonvoisin, J.; Beauvillain, P.; Girerd,
J.-J.; Nuber, B.; Weiss J.; Heinze, J.Angew. Chem., Int. Ed. Engl., 1986,
25, 1030.

Scheme 6

Figure 6. SCHAKAL view of complex9. DME molecules bonded to
sodium are omitted for clarity. Prime denotes a transformation of-x,
-y, 1 - z.

Table 4. Selected Bond Distances (Å) and Angles (deg) for
Complex9a

Mn1-O1 2.116(4) Na2-O6 2.355(5)
Mn1-O2 2.119(3) O1-C1 1.317(7)
Mn1-N1 2.088(5) O2-C20 1.338(6)
Mn1-N2 2.440(4) N1-C7 1.445(7)
Mn1-N2′ 2.104(4) N1-C8 1.381(7)
Na1-O2 2.598(4) N2-C13 1.451(8)
Na1-O3 2.387(5) N2-C14 1.392(6)
Na1-O4 2.265(4) C6-C7 1.530(8)
Na1-N1 2.444(4) C7-C21 1.515(7)
Na2-O1 2.386(5) C14-C15 1.480(9)
Na2-O2 2.265(4) C14-C22 1.354(8)
Na2-O5 2.484(6)

N2-Mn1-N2′ 96.0(1) Na2-O1-C1 108.3(3)
N1-Mn1-N2′ 138.2(2) Mn1-O1-C1 121.7(3)
N1-Mn1-N2 74.3(1) Na1-O2-Na2 117.8(1)
O2-Mn1-N2′ 108.7(1) Mn1-O2-Na2 95.1(1)
O2-Mn1-N2 82.7(1) Mn1-O2-Na1 79.6(1)
O2-Mn1-N1 110.2(1) Na2-O2-C20 123.7(3)
O1-Mn1-N2′ 108.7(1) Na1-O2-C20 108.1(2)
O1-Mn1-N2 154.7(1) Mn1-O2-C20 124.8(3)
O1-Mn1-N1 90.1(1) Mn1-N1-Na1 83.9(2)
O1-Mn1-O2 84.2(1) Na1-N1-C8 109.4(3)
O4-Na1-N1 153.6(2) Na1-N1-C7 105.1(3)
O3-Na1-N1 102.3(2) Mn1-N1-C8 114.7(3)
O3-Na1-O4 72.2(2) Mn1-N1-C7 119.4(3)
O2-Na1-N1 86.3(1) C7-N1-C8 117.5(4)
O2-Na1-O4 99.1(2) Mn1-N2-C14 111.8(3)
O2-Na1-O3 171.1(2) Mn1-N2-C13 102.2(3)
O5-Na2-O6 68.2(2) C13-N2-C14 114.0(4)
O2-Na2-O6 179.7(2) N1-C7-C6 111.6(4)
O2-Na2-O5 112.0(2) C6-C7-C21 111.0(4)
O1-Na2-O6 104.5(2) N1-C7-C21 114.7(4)
O1-Na2-O5 154.0(2) N2-C14-C22 125.3(5)
O1-Na2-O2 75.2(1) N2-C14-C15 115.2(5)
Mn1-O1-Na2 91.8(1) C15-C14-C22 119.4(5)

a Prime denotes a transformation of-x, -y, 1 - z.
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3. The C-C Bonds Functioning as Two Electron Reser-
voirs. The most attractive property of complexes5-8 is their
tendency to function as reducing agents. In the first class we
report reactions in which only the electrons stored in the C-C
bonds are used in combination with inorganic, organic, and
organometallic substrates,18 as exemplified in Scheme 7.
The slow addition of AgNO3 or PhCH2Cl to 6 reveals the

intermediacy of a violet solution, complex5, before giving a
solution containing exclusively1. Such reagents reverse the
reduction pathway given in Scheme 2. In the case of benzyl
chloride, the excess of reagent does not cause any oxidation of
Mn(II), contrary to what has been reported for iron(II)-Schiff
base derivatives.19 In reactionb) the benzyl radical has been
partially identified as 1,2-diphenylethane. The reaction of6
with p-benzoquinone can be easily followed by the appearance
of the insoluble blue-green sodium salt of quinidrone.20 The
reaction of6 with the cobalt(II)-Schiff base10 is very fast in
THF and led to a deep green solution of the corresponding
cobalt(I) derivative,4d,21 11. The latter compound was easily
identifiedVia its conversion into the corresponding organome-
tallic derivative, 12 (see the Experimental Section).22 The
preliminary interaction with the reducible substrate is easily
understandable in the case of reactionsa andb, while we should
admit, in the case of reactiond andc, the electron transfer pass
through the interaction assured by the ability of10 and

p-benzoquinone to bind alkali cations. The four reactions in
Scheme 7 have some common characteristics.
(i) They use exclusively the C-C bonds as a source of

electrons with [Mn(salophen)] being restored in its original form,
thus reversing the steps in Scheme 2. The simple cleavage of
the C-C and Mn-N bonds as they are in6 would lead to an
overall migration of a salophen ligand from one Mn to the other
one.
(ii) The reaction with a reducible substrate never occurs at

the C-C sites, thus supporting a long range electron transfer
process, mediated by the metal sites in the structure.
A second class of reactions considers substrates which are

able not only to use the electrons from the C-C bonds but also
from Mn increasing its oxidation state.
The reaction of6with a stoichiometric amount of iodine led

to the corresponding Mn(III) derivative13 (see Scheme 8),
which was converted, in the presence of a large excess of iodine,
to the triiodide derivative14, [Mn(salophen)(I3)(THF)], whose
structural parameters and figure are given in the Supporting
Information. The same products13and14have been obtained
by a direct oxidation of1 with iodine.
The reaction of manganese(II) with dioxygen assisted by an

intramolecular source of electrons, other than the metal,
represents a novel approach in the vast area of manganese
complexes reacting with O2.1d,12b,15,23 This approach opens new
perspectives in modeling studies concerning the Mn-assisted
oxygen transfer reactions.24 In addition, to couple a metal with
a source of electrons would engender a novel hypothesis on
how to manage the redox chemistry of a transition metal in
general.12a,15,25

In this context we studied the reaction of dioxygen with6
and 8, though the use of8 was more favorable due to its
considerable solubility in hydrocarbons. The results on the two
compounds were quite the same. In the reaction with O2 [O2:
Mn ) 1:1], complexes6 and8 behave as eight electron reducing
agents, four of which come from the two C-C bonds and four
from the oxidation of Mn(II) to Mn(IV), with the concomitant
reduction of dioxygen to oxide. Complex16 was freed from
Na2O by extracting the crude product withn-hexane, though

(18) Connelly, N. G.; Geiger, W. E.Chem. ReV. 1996, 96, 877.
(19) Floriani, C.; Fachinetti, G.J. Chem. Soc., Chem. Commun.1973,

17.
(20) Depew, M. C.; Wan, J. K. S. inThe Chemistry of Quininoid

Compounds; Patai, I., Rappoport, Z., Eds; Wiley: New York, 1988; Vol.
21.

(21) Fachinetti, G.; Floriani, C.; Zanazzi, P. F.; Zanzari, A. R.Inorg.
Chem.1979, 18, 3469.

(22) (a) Sweany, R. L. InComprehensiVe Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K.,
1995; Vol. 8; Chapter 1, p 42, and references therein. (b) Calligaris, M.;
Randaccio, L. InComprehensiVe Coordination Chemistry; Wilkinson, G.,
Gillard, R. D., McCleverty, J. A., Eds.; Pergamon: Oxford, U.K., 1987.
(c) Pratt, J. M.; Craig, P. J.AdV. Organomet. Chem.1973, 11, 404. (d)
Calligaris, M.; Nardin, G.; Randaccio, L.Coord. Chem. ReV. 1972, 7, 385.
(e) Bigotto, A.; Costa, G.; Mestroni, G.; Pellizzer, G.; Puxeddu, A.;
Reisenhofer, E.; Stefani, L.; Tauzher, G.Inorg. Chim. Acta1970, 4, 41. (f)
Pattenden, G.Chem. Soc. ReV. 1988, 17, 361 and references therein. (g)
Dodd, D.; Johnson, M. D.J. Organomet. Chem.1973, 52, 1. (h) Pratt, J.
M.; Craig, P. J.AdV. Organomet. Chem.1973, 11, 414. (i) Randaccio, L.;
Bresciani-Pahor, N.; Zangrando, E.; Marzilli, L. G.Chem. Soc. ReV. 1989,
18, 225. (j) Charlaud, J.-P.; Zangrando, E.; Bresciani-Pahor, N.; Randaccio,
L.; Marzilli, L. G. Inorg. Chem.1993, 32, 4256.

(23) (a) Coleman, W. M.; Taylor, L. T.Coord. Chem. ReV. 1980, 32, 1.
(b) Horwitz, C. P.; Dailey, G. C.;Comments Inorg. Chem.1993, 14, 283.
(c) Bossek, U.; Weyehermu¨ller, T.; Wieghardt, K.; Nuber, B.; Weiss, J.J.
Am. Chem. Soc.1990, 112, 6387.

(24) (a) Yamada, T.; Imagawa, K.; Nagata, T.; Mukaiyama, T.Chem.
Lett. 1992, 2231. (b) Mukaiyama, T.; Yamada, T.; Nagata, T.; Imagawa,
K. Chem. Lett. 1993, 327. (c) Nagata, T.; Imagawa, K.; Yamada, T.;
Mukaiyama, T.Inorg. Chim. Acta1994, 220,283. (d) Nagata, T.; Imagawa,
K.; Yamada, T.; Mukaiyama, T.Chem. Lett. 1994, 1259. (e) Imagawa, K.;
Nagata, T.; Yamada, T.; Mukaiyama, T.Chem. Lett. 1995, 335. (f)
MacDonnel, F. M.; Fackler, N. L. P.; Stern, C.; O’Halloran, T. V.J. Am.
Chem. Soc.1994, 116, 7431. (g) Nagata, T.; Imagawa, K.; Yamada, T.;
Mukaiyama, T.Bull. Chem. Soc. Jpn.1995, 68, 3241.

(25) (a) Brudvig, G. W.; Crabtree, R. H.Proc. Natl. Acad. Sci. U.S.A.
1986, 83, 4586. (b) Brudvig, G. W.; Crabtree, R. H.Progress in Inorganic
Chemistry; 1989; Vol. 37. (c) Dismukes, G. C.Chem. Scr.1988, 28A, 99.
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this was impossible for15 due to its low solubility in
hydrocarbons.
Complex15has been very recently reported as the unexpected

result from the reaction of salophenH2 and KMnO4.26 An
analogous structure appeared on a substituted salen made from
some Mn(III) oxidation.27 Complex16 has been fully charac-
terized, including the X-ray analysis, and shows a similar
structure to15, and it has been included in the Supporting
Information. The reaction shown in Scheme 9 is peculiar in
that the obtention of a di-µ-oxo-manganese(IV) occurs directly
from Mn(II) and dioxygen, and because the binucleating bonding
mode of salophen requires a partial migration of the ligand
across two Mn ions. The kind of synthesis reported for the
two µ-dioxo-Mn(IV) having the skeleton shown for15 and
1626,27 is serendipitous and so not particularly informative on
their genesis.
As far as the first issue is concerned, we know that the

reaction of either1 or 4 with dioxygen results in the oxidation

of the imino to an amido carbon, with the concomitant formation
of a polymeric µ-hydroxo-Mn(III).28 This proves that the
reaction of6 and8with dioxygen does not reverse the reduction
pathway shown in Scheme 2 and that the reaction of O2 does
not occur on1. Therefore, unlike for the reactions reported in
Scheme 7, the reaction of6 and8 with O2 does not restore the

(26) Torayama, H.; Nishide, T.; Asada, H.; Fujiwara, M.; Matsushita,
T. Chem. Lett. 1996, 387-388..

(27) Bermejo, M. R.; Castin˜eiras, A.; Garcia-Monteagudo, J. C.; Rey,
M.; Sousa, A.; Watkinson, M.; McAuliffe, C. A.; Pritchard, R. G.; Beddoes,
R. L. J. Chem. Soc., Dalton Trans.1996, 2935-2944.

(28) Gallo, E.; Solari, E.; Re, N.; Floriani, C.; Chiesi-Villa, A.; Rizzoli,
C. Angew. Chem., Int. Ed. Engl.1996, 35, 1981-1983.

Table 5. Comparison of Relevant Structural Parameters within the Mn(salophen) Units for Complexes4-6, 9

4a 5b 6 9

dist of atoms from the N2O2 core, Å O1 0.038(13) [0.050(13)] 0.072(6) [0.132(7)] 0.021(3) 0.233(3)
O2 -0.038(13) [-0.054(13)] -0.334(7) [-0.166(5)] -0.021(3) -0.218(3)
N1 -0.085(17) [-0.107(16)] -0.771(1) [-0.890(8)] -0.022(3) -0.469(4)
N2 0.125(20) [0.116(17)] 0.808(7) [0.756(7)] 0.022(3) 0.452(4)
Mn1 -0.019(3) [-0.021(3)] 0.846(2) [0.864(2)] -0.988(1) 0.830(1)

foldingc along the N1‚‚‚O1 line, deg 26.6(6) [25.2(6)] 18.5(3) [20.6(3)] 35.1(1) 9.0(2)
folding along the N2‚‚‚O2 line, deg 7.2(7) [1.0(5)] 32.8(3) [50.4(3)] 38.0(1) 15.7(2)
angle between Mn1-N1-O1 and
Mn1-N2-O2 planes, deg

6.2(6) [6.8(5)] 84.1(2) [76.1(3)] 74.8(1) 73.3(1)

angle between the mean OC3N planes, deg 19.8(6) [24.2(6)] 74.4(3) [75.4(3)] 2.8(1) 62.2(2)
torsion angle N1-C8-C13-N2, deg 4(3) [-5(3)] -6.0(13) [-9.9(12)] 0.4(5) -3.4(7)
dist of atoms from the Mn1-N1-N2 plane, Å C8 0.12(2) [0.14(2)] 0.484(11) [0.449(10)] 1.067(4) 0.677(5)

C13 0.69(2) [0.09(2)] 0.530(10) [0.575(9)] 1.068(3) 0.656(5)

a Values in square brackets refer to molecule B.b Values in square brackets refer to Mn2, O3, O4, N3, N4, C28, C33.c The folding is defined
as the dihedral angle between the Mn, N, O, and OC3N planes of a six-membered chelation ring.

Table 6. Experimental Data for the X-ray Diffraction Studies on Crystalline Complexes4-6, 9, and14a

complex 4 5 6 9 14

chemical formula C50H38Mn2N6O4 C52H58Mn2N4Na2O10 C64H88Mn2N4Na4O16 C60H76Mn2N4Na4O12 C24H22I3MnN2O3C4H8O
a (Å) 24.632(4) 14.241(3) 12.678(3) 13.303(3) 9.886(8)
b (Å) 16.821(3) 16.080(4) 18.314(3) 17.456(4) 19.377(3)
c (Å) 10.098(3) 12.426(2) 14.807(2) 14.039(3) 15.883(4)
R (deg) 90 101.91(2) 90 90 90
â (deg) 90 111.42(2) 92.83(2) 104.56(2) 94.47(3)
γ (deg) 90 88.71(2) 90 90 90
V (Å)3 4184.0(16) 2587.6(10) 3433.8(11) 3155.4(12) 3033(3)
Z 4 2 2 2 4
fw 896.8 1054.9 1371.3 1247.1 894.2
space group P212121 P1h P21/n P21/n P21/n
T (°C) 22 22 22 22 22
λ (Å) 0.71069 1.54178 0.71069 0.71069 0.71069
Fcalcd (g cm-3) 1.424 1.354 1.326 1.313 1.958
µ (cm-1) 6.31 46.41 4.40 4.68 34.74
transmission coeff 0.885-1.000 0.820-1.000 0.828-1.000 0.934-1.000 0.691-1.000
unique measured data 7274 9751 6092 5531 5372
unique “observed” data 3336 7403 5006 4423 4299
criterion for obsn F2 > -2σ(F2) F2 > 0 F2 > 0 F2 > 0 F2 > 0
unique obs data
[I > σ2(I)]

1819 2728 2818 2016 2416

R) 0.046 0.074 0.045 0.044 0.045
wR2) 0.137 0.222 0.131 0.108 0.129
GOF) 1.353 0.979 0.989 0.804 1.027

a R ) ∑|∆F|/∑|Fo| calculated on the unique observed data [I > 2σ(I)]. wR2 ) [∑w|∆F2|2/∑w|Fo2|2]1/2 calculated on the unique “observed”
data. GOF) [∑w|∆F2|2/(NO - NV)]1/2.

Scheme 9
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original [Mn(salophen)] fragment for further reactivity with O2.
In addition, the reaction with O2 does not result in the cleavage
of the intradimer C-C and Mn-N bonds in6-8, since the
final compounds would have a salophen to Mn bonding mode
different from that observed in15and16. This bonding mode
is compatible with the assumption that5 and7 are the precursors
of 15 and 16 in the reaction with O2. Reacting6 with a
controlled amount of dioxygen gave5 as violet crystals (see
the Experimental Section). This proves that the intermediate
compound reacting with O2 and leading directly to15 is complex
5 and not1. Further, the salophen ligand has in5 and7 the
bridging bonding mode displayed in15 and16. The reaction
pathway of6, which will be the same for8, is shown in Scheme
10. The sequence shows the two electron oxidation of6 to 5,
followed by the cleavage of two Mn-N and one C-C bonds
in 5 with the incorporation of two bridging oxo ligands.
Therefore the relative arrangement of the salophen ligand toward
Mn in 15 remains as it is in5, with salophen displaying a
bridging bonding mode across two Mn ions.
The temperature dependence of the magnetic moment of15

and its tert-butyl derivative16 are quite similar and indicate
antiferromagnetically coupled Mn(IV) dimers. The data were
fitted using a Heisenberg Hamiltonian, withS1 ) S2 ) 3/2, and
including a correction for monomeric Mn(IV) impurities.11 The
best fitting values for16 areg ) 1.86,J ) -80.1 cm-1, andx
) 1.8%. The antiferromagnetic coupling constant obtained for
these bisµ-oxo Mn(IV) dimers are similar to those observed
for other bisµ-oxo Mn(IV) Schiff base dimers (usuallyca. 100
cm-1) with comparable Mn-Mn distance.1c,29

Conclusions

This report deals with a rather unique investigation on the
chemical reduction of the very popular model Mn(II)-tetraden-
tate Schiff base complexes. This approach led us to to discover
(i) a novel mode of storing and releasing electrons based on
the metal-assisted reversible formation (reductive coupling) and
cleavage (oxidative decoupling) of C-C bonds across two Schiff
base ligands: (ii) the coupling of an electron reservoir centered
at the ligand with the redox behavior of the metal. This kind
of molecular battery has some original peculiarities: (a) the
C-C bonds function as a shuttle of two electrons without being
involved in a reaction; (b) a large number of electrons can be
stored and released by the system; (c) the metal assists long-
range electron transfers from the C-C bonds to the incoming
substrates; and (d) the two redox systems, the metal and the
ligand, can function independently from another or synergically.

Experimental Section

General Procedure. Unless otherwise noted, materials were
obtained from commercial suppliers and used without further purifica-
tion. Solvents were dried and distilled by standard methods prior to
use. The syntheses of [Mn3Mes6]‚toluene7 and 3,5-But2-salicylaldehyde

have been carried out as reported.30 All compounds were handled using
modified Schlenk techniques under a nitrogen atmosphere or in an inert
atmosphere drybox under nitrogen. IR spectra were recorded on a
Perkin-Elmer 1600 FT IR instrument.
Magnetic susceptibility measurements were made on a with a

MPMS5 SQUID susceptometer (Quantum Design Inc.) operating at a
magnetic field strength of 3 kG. Corrections were applied for
diamagnetism calculated from Pascal constants. Effective magnetic
moments were calculated by the equationµeff ) 2.828(øMnT)1/2, where
øMn is the magnetic susceptibility per manganese atom. Fitting of the
magnetic data to the theoretical equation were performed by minimizing
the agreement factor, defined as

through Levenberg-Marquardt routine.31
Synthesis of 1. [Mn3Mes6]‚C7H8

7 (7.1 g, 7.31 mmol) was added to
a THF (500 mL) solution of salophenH2 (6.90 g, 21.8 mmol) to give
an orange solution which then turned deep red. The mixture was then
refluxed for 12 h and concentrated to1/3 of its volume, and pentane
(150 mL) was added. The resulting red crystalline solid was collected
by filtration and driedin Vacuo (7.10 g, 73%), Crystals suitable for
X-ray analysis were obtained recrystallizing1 from CH3CN, to give
the solvated form, [Mn(salophen)(CH3CN)]2. Anal. Calcd for 1,
C48H44Mn2N4Na4O6: C, 65.31; H, 5.02; N, 6.35. Found: C, 65.13;
H, 5.14; N, 6.72. IR (Nujol,νmax/cm-1) 1609(s), 1581(s), 1528(m),
1296(m), 1178(s), 1145(s), 972(w), 914(m), 884(w), 852(w), 747(s),
529(m). UV-vis (THF, 8.10× 10-5 M): λ ) 252 nm (ε 71 700 cm-1

M-1), 298 (43 700), 410 (46 500).
Synthesis of 2. [Mn3Mes6]‚C7H8

7 (4.67 g, 4.81 mmol) was added
to a THF (300 mL) solution of salophen(CH3)2H2 (4.96 g, 14.4 mmol)
to give an orange solution which then turned deep red. The mixture
was then refluxed for 12 h and concentrated to1/3 of its volume, and
pentane (150 mL) was added. The resulting orange crystalline solid
was collected by filtration and driedin Vacuo (5.00 g, 74%). Anal.
Calcd for2, C52H52Mn2N4O6: C, 66.52; H, 5.58; N, 5.97. Found: C,
67.31; H, 5.30; N, 6.45. IR (Nujol,νmax/cm-1) 1599(s), 1583(s), 1546-
(s), 1530(s), 1469(s), 1440(s), 1310(s), 1213(s), 1130(m), 861(m), 752-
(s), 738(m). µ ) 5.92µB at 298 K.
Synthesis of 3. NaH (1.56 g, 65.0 mmol) was added slowly (ca 3

min) without stirring, to an orange THF (400 mL) solution of salophen-
(But)4H2 (16.0 g, 29.6 mmol). Gas evolution was immediately observed,
with the concomitant formation of an orange suspension. The mixture
was stirred at room temperature until gas evolution stopped (ca. 10
min) and then refluxed for 3 h. The excess NaH was removed by
filtration, and [MnCl2(THF)1.5]n (6.92 g, 29.6 mmol) was added. The
resulting red suspension was refluxed overnight and then evaporated
to dryness, and the residue was extracted with toluene (250 mL) to
eliminate NaCl. The suspension was evaporated to dryness,n-hexane
(150 mL) added, and the red crystalline solid was collected by filtration
and dried in Vacuo (17.33 g, 88%). Anal. Calcd for3, C80H108-
Mn2N4O6: C, 72.16; H, 8.17; N, 4.21. Found: C, 72.22; H, 8.66; N,
4.31, IR (Nujol),νmax/cm-1) 1600(s), 1577(s), 1544(m), 1524(s), 1433-
(s), 1381(s), 1359(s), 1254(m), 1166(s), 832(m), 784(m), 746(s), 508-
(m).
Synthesis of 4. Complex1 (1.65 g, 1.87 mmol) was dissolved in

pyridine (50 mL), the red solution was stirred at room temperature for
12 h and then evaporated to dryness, and pentane (50 mL) was added.
The resulting red solid was collected by filtration and driedin Vacuo
(1.50 g, 90%). Recrystallization from Et2O:Py) 80:20 gave crystals
suitable for X-ray analysis. Anal. Calcd for4, C50H36Mn2N6O4: C,
66.97; H, 4.27; N, 9.37. Found: C, 66.83; H, 4.11; N, 9.20. IR (Nujol),
νmax/cm-1) 1606(s), 1580(s), 1540(s), 1525(s), 1482(m), 1387(s), 1349-
(m), 1327(m), 1301(s), 1252(w), 1243(w), 1216(w), 1176(s), 1145(s),
1124(m), 1037(m), 1028(m), 918(m), 841(m), 798(m), 771(m), 752-
(s), 740(s), 701(s), 600(m), 529(s), 460(m).

(29) Libby, E.; Webb, R. J.; Streib, W. E.; Folting, K.; Huffman, J. C.;
Hendrickson, D. N.; Christou, J.Inorg. Chem.1989, 28, 4037.

(30) Lorrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp,
C. M. J. Org. Chem.1994, 59, 1939.

(31) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes; Cambridge University Press: Cambridge, U.K., 1989.
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Synthesis of 5. Method A.Sodium sand (0.30 g, 13.0 mmol) was
added to a suspension of1 (0.82 g, 0.93 mmol) in DME (300 mL).
The resulting red suspension was stirred at room temperature for 12 h,
the excess sodium then removed by extraction, the filtrate was
concentrated to1/3 of its volume and a dilute mixture of P2O5-dried
oxygen in nitrogen atmosphere allowed to enter. After 3 days red
crystals suitable for X-ray analysis was obtained and collected by
filtration (0.6 g, 56%). Anal. Calcd for5, C56H68Mn2N4Na2O12: C,
58.74; H, 5.99; N, 4.89. Found: C, 57.81; H, 5.32; N, 5.37. IR (Nujol,
νmax/cm-1) 1600(s), 1580(s), 1533(m), 1441(s), 1338(s), 1315(m), 1292-
(s), 1264(s), 1167(s), 1148(m), 1109(m), 1086(s), 1031(m), 902(m),
752(s), 548(w), 477(w).
Method B. Complex6 (0.99 g, 0.72 mmol) was added as a solid

to a DME (150 mL) suspension of1 (0.64 g, 0.72 mmol), the resulting
red solution was stirred at room temperature for 12 h and then
concentrated to1/3 of its volume, andn-hexane (100 mL) was added.
The resulting red crystalline solid was collected by filtration and dried
in Vacuo (1.5 g, 90%). Recrystallization from DME gave crystals
suitable for X-ray analysis. Anal. Calcd for5, C56H68Mn2N4Na2O12:
C, 58.74; H, 5.99; N, 4.89. Found: C, 58.62; H, 5.17; N, 5.22. UV-
vis (THF, 6.73× 10-5 M): λ ) 248 nm (ε 70 600 cm-1 M-1), 290
(41 700), 394 (25 900).
Synthesis of 6.Sodium sand (1.72 g, 74.78 mmol) was added to a

suspension of1 (9.02 g, 10.23 mmol) in THF (350 mL). The resulting
red suspension was stirred at room temperature for 12 h, then the excess
sodium was removed by filtration, and the filtrate evaporated to dryness.
DME (30 mL) andn-hexane (200 mL) was added. The resulting yellow
solid was collected by filtration and driedin Vacuo (12.2 g, 87%).
Recrystallization from DME gave crystals suitable for X-ray analysis.
Anal. Calcd for6, C64H88Mn2N4Na4O16: C, 56.06; H, 6.47; N, 4.09.
Found: C, 56.49; H, 6.06; N, 4.56. IR (Nujol,νmax/cm-1) 1587(s),
1544(m), 1440(s), 1286(s), 1261(s), 1109(m), 1083(m), 1034(m), 1022-
(m), 754(m). UV-vis (THF, 5.47× 10-5 M): λ ) 244 nm (ε 62 500
cm-1 M-1), 298 (39 600), 378(sh) (12 000), 508 (3400).
Synthesis of 7. Complex8 (1.67 g, 1.02 mmol) was added as a

solid to a DME (100 mL) suspension of3 (1.36 g, 1.02 mmol), the
resulting red solution was stirred at room temperature for 12 h and
then concentrated to1/3 of its volume, and the resulting red crystalline
solid was collected by filtration and driedin Vacuo(2.5 g, 70%). Anal.
Calcd for 7, C96H152Mn2N4Na2O16: C, 64.99; H, 8.64; N, 3.16.
Found: C, 64.37; H, 8.70; N, 3.01.
Synthesis of 8. Sodium sand (0.69 g, 30.0 mmol) was added to a

suspension of3 (7.47 g, 5.62 mmol) in DME (100 mL). The resulting
red suspension was stirred at room temperature for 12 h, and the excess
sodium was removed by extraction. The mixture was then concentrated
to 1/3 of its volume, and heptane (100 mL) was added. The resulting
yellow solid was collected by filtration and driedin Vacuo(6.0 g, 65%).
Recrystallization from DME gave crystals suitable for X-ray analysis.
Anal. Calcd for8, C88H132Mn2N4Na4O12: C, 64.45; H, 8.11; N, 3.42.
Found: C, 64.87; H, 8.42; N, 3.07. IR (Nujol,νmax/cm-1) 1593(m),
1542(s), 1407(m), 1358(s), 1347(s), 1309(s), 1276(s), 1244(s), 1193(s),
1156(m), 1123(m), 1082(s), 1020(m), 862(s), 834(s), 736(m), 724(s).
Synthesis of 9. Sodium sand (0.46 g, 20.0 mmol) was added to a

suspension of2 (1.96 g, 2.09 mmol) in THF (200 mL). The resulting
red suspension was stirred at room temperature for 12 h, the excess
sodium was removed by filtration, and the mixture was evaporated to
dryness. DME (30 mL) and heptane (100 mL) were then added. The
resulting yellow solid was collected by filtration and driedin Vacuo
(2.0 g, 77%). Recrystallization from DME gave crystals suitable for
X-ray analysis. Anal. Calcd for9, C60H76Mn2N4Na4O12: C, 57.79;
H, 6.14; N, 4.49. Found: C, 57.84; H, 6.45; N, 4.43. IR (Nujol,νmax/
cm-1) 1581(s), 1537(m), 1431(s), 1290(s), 1241(s), 1191(m), 1107-
(m), 1081(s), 1033(m), 858(m), 748(s).µ ) 3.15µB at 293 K.
Reaction of Complex 6 with AgNO3. Complex6 (1.04 g, 0.76

mmol) was added as a solid to a THF (150 mL) suspension of AgNO3

(0.52 g, 3.04 mmol). The resulting red suspension was stirred at room
temperature for 12 h and refluxed for 3 h. The metallic silver and
NaNO3 were removed by filtration, and the red solution concentrated
to 1/3 of its volume followed by the addition ofn-hexane (100 mL).
The resulting orange solid was collected by filtration and driedin Vacuo
(0.40 g, 60%). Anal. Calcd for1, C48H44Mn2N4O6: C, 65.31; H, 5.02;
N, 6.35. Found: C, 64.78; H, 4.53; N, 6.63.

Reaction of Complex 6 with PhCH2Cl. To a red benzene (50 mL)
suspension of6 (0.98 g, 0.71 mmol) was added, in a dropwise manner
and at room temperature, a benzene (50 mL) solution of a fresh distilled
PhCH2Cl (0.57 mL, 4.94 mmol). The resulting red suspension was
stirred at room temperature for 12 h and refluxed for 4 h. The NaCl
was eliminated by filtration, the solution evaporated to dryness, and
pentane (100 mL) was added. The resulting red solid was collected
by filtration and driedin Vacuo(0.50 g, 78%). Anal. Calcd for [Mn-
(salophen)(benzene)], C26H20MnN2O2: C, 69.80; H, 4.51; N, 6.26.
Found: C, 69.34; H, 4.96; N, 5.49. IR (Nujol,νmax/cm-1) 1608(s),
1533(s), 1314(m), 1272(w), 1179(m), 1150(m), 1030(w), 917(w), 853-
(w), 751(s), 699(m), 601(w), 542(w).
Reaction of Complex 6 with 1,4-Benzoquinone.To a THF (150

mL) solution of 6 (3.33 g, 2.43 mmol) was added solid 1,4-
benzoquinone (1.36 g, 12.58 mmol). The resulting green suspension
was stirred at room temperature for 1 h and then refluxed for 12 h.
The green complex [(1,4-benzoquinone)-(1,4-Na2-hydroquinone)] was
eliminated by extraction and identified by elemental analysis. The
resulting red solution was evaporated to dryness, pentane (100 mL)
added, and the resulting orange solid collected by filtration and dried
in Vacuo(0.60 g, 78%). Anal. Calcd for1, C48H44Mn2N4O6: C, 65.31;
H, 5.02; N, 6.35. Found: C, 65.50; H, 4.33; N, 6.25.
Synthesis of 12. The complex [Co{salen(OCH3)2}] (0.66 g, 1.72

mmol) was added as a solid to a THF (150 mL) suspension of6 (1.18
g, 0.86 mmol). The resulting green solution was stirred at room
temperature for 12 h, and a THF (50 mL) solution of CH3I (0.364 g,
2.58 mmol) was added in a dropwise manner at-60 °C. The resulting
red solution was stirred at room temperature for 12 h and evaporated
to dryness, then the red residue dissolved in CH2Cl2 (100 mL) and
then was poured into distilled water. The organic phase was collected,
and the water was eliminated by azeotropic distillation. After 1 day at
-20 °C, a red crystalline solid was collected by filtration and driedin
Vacuo(0.5 g, 62%). 1H NMR for [Co{salen(OCH3)2}](CH2Cl2), C20H23-
Cl2CoN2O4, (DMSO-d6, 298 K): δ 7.90 (s, 2H); 6.76-6.65 (m, 4H);
6.30-6.27 (m, 2H); 5.76 (s, 2H); 3.74 (s, 6H); 3.44-3.35 (m, 4H);
2.15 (s, 3H).
Synthesis of 13.To a stirred red THF (50 mL) solution of6 (0.95

g, 0.70 mmol) was added, at-60 °C, a THF solution of I2 (58 mL,
0.04 M). The resulting red suspension was stirred at room temperature
for 12 h to give a red crystalline solid which was then collected
by filtration and driedin Vacuo (0.67 g, 84%). Anal. Calcd for13,
C24H22IMnN2O3: C, 50.72; H, 3.90; N, 4.93. Found: C, 50.05; H,
4.13; N, 4.73. IR (Nujol,νmax/cm-1) 1603(s), 1577(s), 1535(s), 1437-
(s), 1286(m), 1234(m), 1194(s), 1150(s), 1129(m), 872(m), 812(s), 761-
(s), 543(s). µ ) 4.72µB at 293 K.
Synthesis of 14.To a stirred red THF (50 mL) solution of6 (0.82

g, 0.60 mmol) was added, at-60 °C, a THF (50 mL) solution of I2
(1.37 g, 5.40 mmol). The resulting red suspension was stirred at room
temperature for 12 h and evaporated to dryness, and Et2O (100 mL)
was added. The red crystalline solid was collected by filtration and
dried in Vacuo(0.8 g, 88.8%). Anal. Calcd for14, C24H22I3MnN2O3:
C, 35.06; H, 2.70; N, 3.41. Found: C, 35.73; H, 3.07; N, 3.35. IR
(Nujol, νmax/cm-1) 1604(s), 1574(s), 1534(s), 1311(m), 1284(m), 1195-
(m), 1151(m), 1129(m), 1102(m), 812(m), 753(m), 544(m).µ ) 5.02
µB at 293 K.
Synthesis of 15‚2Na2O. Complex 6 (6.65 g, 4.85 mmol) was

dissolved in pyridine (150 mL) to which was added anhydrous oxygen.
The resulting brown solution was stirred at room temperature for 12 h
and concentrated to1/3 of its volume, andn-hexane (100 mL) was added.
The resulting brown solid was collected by filtration and driedin Vacuo
(4.1 g, 87%). Anal. Calcd for15‚2Na2O, C44H36Mn2N4Na4O9: C,
54.67; H, 3.75; N, 5.80. Found: C, 54.03; H, 3.90; N, 5.48.
Synthesis of 16.Complex8 (1.1 g, 0.67 mmol) was dissolved in

pyridine (100 mL) to which was added anhydrous oxygen. The result-
ing brown solution was stirred at room temperature for 12 h and then
evaporated to dryness. Pentane (50 mL) was added to the residue,
and the brown crystalline solid formed was collected by filtration and
dried in Vacuo (0.6 g, 56%). Recrystallization fromn-hexane gave
crystals suitable for X-ray analysis. Anal. Calcd for16, C88H132Mn2-
N4O14: C, 66.90; H, 8.42; N, 3.55. Found: C, 66.29; H, 7.18; N, 3.61.
X-ray Crystallography for Complexes 4-6, 9, and 14. Suitable

crystals were mounted in glass capillaries and sealed under nitrogen.
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The reduced cells were obtained with use of TRACER.32 Crystal data
and details associated with data collection are given in Tables 6 and
S1 (Supporting Information). Data for all complexes were collected
at room temperature (295 K) on a single-crystal diffractometer (Philips
PW1100 for4, Rigaku AFC6S for5, 6 and14and Enraf-Nonius CAD4
for 9). For intensities and background, individual reflection profiles
were analyzed.33 The structure amplitudes were obtained after the usual
Lorentz and polarization corrections,34 and the absolute scale was
established by the Wilson method.35 The crystal quality was tested by
ψ scans showing that crystal absorption effects could not be neglected.
Data were then corrected for absorption with ABSORB36 for 9 and
using a semiempirical method37 for 4-6, and14. Anomalous scattering
corrections were included in all structure factor calculations.38b Scat-
tering factors for neutral atoms were taken from ref 38a for nonhydrogen
atoms and from ref 39 for H.

Structure solutions were based on the observed reflections [I >
2σ(I)]. The refinements were carried out using the unique reflections
with F2 > 0 for 5, 6, 9, and14 and withF2 > -2σ(F2) for 4. The
structures were solved by the heavy-atom method starting from a three-
dimensional Patterson map.40 During the least-squares the function
minimized was∑w(∆F2)2.41 In the last stage of refinement the
weighting schemew ) 1/[σ2(Fo2)+(aP)2] (with P ) (Fo2 + 2Fc2)/3
was applied witha resulting in the value of 0.0274, 0.0959, 0.0620,
0.0369, for4-6, 9, and14, respectively.

Refinement of all complexes was carried out first isotropically and
then anisotropically for all the non-H atoms, except for the C44 methyl
carbon atom in5, which was found to be statistically distributed over
two positions (A and B) isotropically refined with site occupation factors
of 0.6 and 0.4, respectively. The refinement of the THF molecule of
crystallization in14was carried out by constraining the C-O and C-C
distances to be 1.42(1) and 1.54(1) Å, respectively.
The hydrogen atoms, except those associated to the disordered C44

methyl carbon in5, which were ignored, partly located from difference
maps, partly put in geometrically calculated positions, were introduced
prior to the final refinements as fixed atom contributions with isotropic
U’s fixed at 0.08 Å2 for 4, 0.10 Å2 for 5, 6, and9, and 0.12 Å2 for 14.
The final difference maps showed no peaks having chemical meaning

above the general background.
Final atomic coordinates are listed in Tables S2-S5 for non-H atoms

and in Tables S8-S11 for hydrogens. Thermal parameters are given
in Tables S14-S17, and bond distances and angles are given in Tables
S20-S23.42
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